gabrieltool Documentation
Release 1.1.0

Junjue Wang

May 07, 2020

Contents

5

User Guide
Installation
Quickstart
Contribute

Indices and tables

Python Module Index

Index

35

37

39

41

43

45

gabrieltool Documentation, Release 1.1.0

OpenWorkflow is a suite of development tools to facilitate the creation and implementation of Wearable Cognitive
Assistants (WCA). They key idea of OpenWorkflow is to represent WCA application logic as a finite state machine
(FSM). You can read more about the fast prototyping methodology of OpenWorkflow in this document (Section 6.2).

OpenWorkflow provides the following tools.
* gabrieltool: A Python library to create and persist finite state machine based wearable cognitive assistants.
* OpenWorkflow State Machine Web Editor: A browser-based GUI to view and edit state machines.

* gabrieltool CLI (gbt): A command-line tool to launch a gabriel server given an FSM.

Contents 1

https://junjuew.github.io/assets/thesis.pdf
https://junjuew.github.io/assets/thesis.pdf
https://junjuew.github.io/assets/thesis.pdf

gabrieltool Documentation, Release 1.1.0

2 Contents

CHAPTER 1

User Guide

1.1 Installation

1.1.1 gabrieltool Python Library

First, make sure Docker is installed. You can follow the Docker installation guide.

Option 1. From PyPI (recommended)

$ pip install -U gabrieltool

Option 2. From Source

$ git clone https://github.com/cmusatyalab/OpenWorkflow.git
$ cd OpenWorkflow/
$ python setup.py install

1.1.2 OpenWorkflow State Machine Web Editor

Visit https://cmusatyalab.github.io/OpenWorkflow. Or You can download the build from the repo’s gh-pages branch
and open the index.html.

1.2 Quickstart

1.2.1 Python Library gabrieltool

Create a Two State FSM

https://docs.docker.com/get-docker/
https://cmusatyalab.github.io/OpenWorkflow
https://github.com/cmusatyalab/OpenWorkflow/archive/gh-pages.zip

20
21
22
23

24

gabrieltool Documentation, Release 1.1.0

from gabrieltool.statemachine import fsm, predicate_zoo, processor_zoo

create a two state state machine
st_start = fsm.State (
name="'start',
processors=[fsm.Processor (
name='proc_start',
callable_obj=processor_zoo.DummyCallable ()
)1,
transitions=|[
fsm.Transition (
name="'tran_start_to_end',
predicates=|[
fsm.TransitionPredicate (
callable_obj=predicate_zoo.Always ()

)

st_end = fsm.State (
name="end'

)

st_start.transitions[0] .next_state = st_end

Save the FSM to a file

save to disk
with open('simple.pbfsm', 'wb') as f:
f.write (fsm.StateMachine.to_bytes(
name='simple_ fsm',
start_state=st_start

))

Launch a gabriel server using the FSM.

$ gbt run ./simple.pbfsm

See Tutorial for a detailed example.

1.2.2 OpenWorkflow State Machine Editor

The editor is hosted at https://cmusatyalab.github.io/OpenWorkflow/. An instruction video is available here.

This web editor provides the following functionalities.
1. Import to view a saved FSM file. This FSM file can be created either from gabrieltool or from the web editor.
2. Export a FSM to a file.

3. Edit FSM states and transitions. Note that only supported operations from processor_zoo and predicate_zoo can
be edited. Custom defined functions can not be created or modified in the web editor.

Compared to the gabrieltool Python library, the web editor provides better visualization and is great for creating small
FSMs. For more complicated FSMs, consider using the gabrieltool for better reproducibility and efficiency.

4 Chapter 1. User Guide

https://cmusatyalab.github.io/OpenWorkflow/
https://youtu.be/L9ugONLpnwc

gabrieltool Documentation, Release 1.1.0

1.2.3 Gabrieltool CLI (gbt)

The gabrieltool cli (gbt) provides a convenient method to launch a gabriel server given an FSM, created by the python
library or the web editor.

$ gbt run <path-to-fsm>
$ # for usage details, see gbt -h

1.3 Tutorial

We will create a wearable cognitive assistant that recognize a person or a chair in this tutorial. First, let’s get the
example code running before going into its implementation.

1. Install gabrieltool.

2. Download gabriel_example.py and the object detector into the same directory. This object detector is the SSD
MobileNet v2 DNN from Tensorflow Object Detection API model zoo. In this example, we will use this object
detector to detect people and chairs.

3. Unzip the downloaded object detector into the same directory.

’$ unzip ssd_mobilenet_v2_saved_model.zip

4. Launch the gabriel server.

’$./gabriel_example run_gabriel_server

5. In the console, you should see log messages of building the FSM, starting gabriel server, and then launching a
docker container.

6. You should also be able to see the container started using docker commands. Note that it may take a few minutes
to download the container image before the container is started.

$ docker ps -—a ——-filter="name=GABRIELTOOL"

7. Once you see the container is up, the server is ready for connection. Download Gabriel client from Android
Play Store to connect to it and try it out. When the client has a person or a chair in view, the application should
say “Found Person” or “Found chair” correspondingly.

8. Once you’re done with the demo, make sure to clean up the created docker container with the following com-
mands.

$ docker stop -t 0 $(docker ps —-a —-g ——filter="name=GABRIELTOOL")

Now you’ve gotten the code running, let see what is happening under the hood. We will focus on explaining how to
create a gabriel server in this tutorial while the example code contains a few more use cases of gabrieltool package.

You can create the same FSM using either the gabrieltool python library or the web GUL. In general, the web GUI
is good for simple applications while the python library provides more flexibility and supports more customizable
application logic. Below we will create the same application using both methods.

1.3.1 Using Python Library

The FSM has two states. The first state is st_start. We want to send a welcome message when a user first connects.
Therefore, st_start doesn’t have any processing involved and will always transition immediately to the next state and
return a welcome message to the client.

1.3. Tutorial 5

https://openworkflow.readthedocs.io/en/latest/installation.html
https://github.com/cmusatyalab/OpenWorkflow/blob/master/examples/gabriel_example.py
https://storage.cmusatyalab.org/openworkflow/ssd_mobilenet_v2_saved_model.zip
https://play.google.com/store/apps/details?id=edu.cmu.cs.gabrielclient

20

21

22

23

24

25

26

27

28

29

40

41

42

43

44

45

46

47

48

49

gabrieltool Documentation, Release 1.1.0

The second state sz_tf is the core of this application. When in this state, input sensor data, which is an image in this
example, is analyzed by our object detector to see if there is a person or a chair. This is specified by a fsm.Processor
with a processor_zoo.TFServingContainerCallable. Since we want to recognize either a person or a chair, we define
two transitions, one for person, another for chair. These transitions have predicates checking whether the person or
the chair object class exist in the output of our TFServingContainerCallable processor. If a person is found, the person
transition will be taken and return an instruction of ‘Found Person’ to the Gabriel client.

import cv2

import fire

from logzero import logger

from gabriel_ server.local engine import runner as gabriel_runner

from gabrieltool.statemachine import fsm, predicate_zoo, processor_zoo, runner

def _build_fsm():
"""Build an example FSM for detecting a person or a chair.

Returns:
gabrieltool.statemchine.fsm.State —— The start state of the generated FSM.
mmwn
st_start = fsm.State (
name='start',
processors=[],
transitions=|[
fsm.Transition (
name='tran_start_to_proc',
predicates=|[
fsm.TransitionPredicate (
callable_obj=predicate_zoo.Always ()

I
instruction=fsm.Instruction (audio='This app will tell you if a_
—person or a chair is present.')

)

st_tf = fsm.State(
name='tf serving',
processors=[fsm.Processor (
name='proc_start',
callable_obj=processor_zoo.TFServingContainerCallable ('ssd_mobilenet_v2',
'ssd_mobilenet_v2__
—saved_model"',
conf_threshold=0.8
)
)1,
transitions=|
fsm.Transition (
name='tf_serving_to_tf_serving_person',
predicates=|[
fsm.TransitionPredicate (
person id is 1 in coco labelmap
callable_obj=predicate_zoo.HasObjectClass (class_name='1")

1,

instruction=fsm.Instruction (audio="'Found Person!")

(continues on next page)

6 Chapter 1. User Guide

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

gabrieltool Documentation, Release 1.1.0

(continued from previous page)

fsm.Transition (
name='tf_serving_to_tf_serving_chair',
predicates=|[
fsm.TransitionPredicate (

You can also use the custom transition predicate we
created in _add_custom _transition_predicate here. e.g.
callable obj=predicate_zoo.HasChairClass ()
callable_obj=predicate_zoo.HasObjectClass (class_name='62")

1,
instruction=fsm.Instruction (audio='Found Chair!")

We need the state objects to mark the destinations of transitions
st_start.transitions[0] .next_state = st_tf

st_tf.transitions[0] .next_state = st_tf

st_tf.transitions[1l] .next_state = st_tf

return st_start

The st_tf state uses a custom transition predicate defined by the following function. To learn more about the how to
use and create FSM components, see its API documentation.

def _add_custom_transition_predicates():
"""Here is how you can add a custom transition predicate to the predicate zoo

See _build fsm to see how this custom transition predicate is used

mwn

from gabrieltool.statemachine import callable_zoo

class HasChairClass (callable_zoo.CallableBase) :
def _ _call__(self, app_state):
id 62 is chair
return '62' in app_state

predicate_zoo.HasChairClass = HasChairClass

The gabriel cognitive engine is created using a FSM cognitive engine runner.

def run_gabriel_server () :
"""Create and execute a gabriel server for detecting people.

This gabriel server uses a gabrieltool.statemachine.fsm to represents
application logic. Use Gabriel Client to stream images and receive feedback.
mmn
logger.info ('Building Person Detection FSM...')
start_state = _build_fsm()
logger.info('Initializing Cognitive Engine...')
engine_name has to be 'instruction' to work with
gabriel client from App Store. Someone working on Gabriel needs to fix this.
engine_name = 'instruction'
logger.info ('Launching Gabriel server...')
gabriel_runner.run (
engine_setup=lambda: runner.BasicCognitiveEngineRunner (

(continues on next page)

1.3. Tutorial 7

https://openworkflow.readthedocs.io/en/latest/source/gabrieltool.statemachine.html#module-gabrieltool.statemachine.fsm
https://openworkflow.readthedocs.io/en/latest/source/gabrieltool.statemachine.html#module-gabrieltool.statemachine.runner

gabrieltool Documentation, Release 1.1.0

(continued from previous page)

engine_name=engine_name, fsm=start_state),
engine_name=engine_name,
input_qgqueue_maxsize=60,
port=9099,
num_tokens=1

)

Gabrieltool currently doesn’t support cleaning up the launched containers automatically. You can stop and remove all
gabrieltool related containers using the following command.

$ docker stop -t 0 $(docker ps -a -q ——filter="name=GABRIELTOOL")

1.3.2 Using OpenWorkflow State Machine Web Editor

Let’s use the Web Editor to create the same application.
First, let’s create states. Go to Add >> State.
start state:

* name: “start”

¢ Check Start from this state.

State

Name

Start from this state?

Add Processor
Save Changes

tf_serving state:
* name: “tf_serving”

* add a new processor

8 Chapter 1. User Guide

https://cmusatyalab.github.io/OpenWorkflow/

gabrieltool Documentation, Release 1.1.0

— name: “tf_vision_processor”

— type: “TFServingContainerCallable”

— model _name: “ssd_mobilenet_v2”

— serving_dir: “ssd_mobilenet_v2_saved_model”. This is directory of the downloaded and unzipped model.

— conf_threshold: 0.8

1.3. Tutorial 9

gabrieltool Documentation, Release 1.1.0

State

Name tf_serving

Start from this state?

New Processor

name tf_vision_processor

Type TFServingContainercC...
model_name ssd_mobilenet_v2
serving_dir ssd_mobilenet_v2_saved_n
conf_threshold ‘ 0.8 ‘

Add Processor

Save Changes

chair_detected state:

e name: “chair_detected”

10 Chapter 1. User Guide

gabrieltool Documentation, Release 1.1.0

State

Name ‘ chair_detected

O
Start from this state?

Add Processor
Save Changes

person_detected state:

* name: “person_detected”

1.3. Tutorial 11

gabrieltool Documentation, Release 1.1.0

State

Name ‘ persun_detected|

Start from this state?

a

Add Processor
Save Changes

Now, let’s add transitions. Go to Add >> Transition

start to tf_serving

name: “start_to_tf_serving”
From State: start
To State: tf_serving
Audio Instruction: “This app will tell you if a person or a chair is present.”
Add Predicate
— name: “start_to_tf_serving_predicate”

— type: Always

12

Chapter 1. User Guide

gabrieltool Documentation, Release 1.1.0

Transition

Mame start_to_tf_serving

From State start

To State tf_serving

Audio Instruction This app will tell you if a pe

Image Instruction New Image

Video Instruction

New Predicate

name start_to_tf_serving_predica

Type ‘ Always v |

Add Predicate
Save Changes

gabrieltool Documentation, Release 1.1.0

tf_serving to chair_detected
* name: “tf_serving_to_chair”
* From State: tf_serving
¢ To State: chair_detected
* Audio Instruction: “Found Chair!”

Add Predicate

— name: “tf_serving_to_chair_predicate”
— type: HasObjectClass

— class_name: 62

14 Chapter 1. User Guide

gabrieltool Documentation, Release 1.1.0

Transition

Name tf_serving_to_chair
From State tf_serving

To State chair_detected
Audio Instruction Found Chair!

Image Instruction

Mew Image
Video Instruction
New Predicate
name tf_serving_to_chair_predice
Type HasObjectClass

class_name 62

Delete

Add Predicate

1.3. Tutorial 15

Save Changes

gabrieltool Documentation, Release 1.1.0

chair_detected back to tf_serving
* name: “chair_to_tf_serving”

¢ From State: chair_detected

 To State: tf_serving

e Add Predicate
— name: “chair_to_tf_serving_predicate”

— type: Always

16 Chapter 1. User Guide

gabrieltool Documentation, Release 1.1.0

Transition

Name

From State

To State

Audio Instruction

Image Instruction

Video Instruction

New Predicate

name

Type

chair_to_tf_serving

chair_detected

tf_serving

New Image

chair_to_tf_serving_predice

‘ Always v |

Add Predicate

Save Changes

gabrieltool Documentation, Release 1.1.0

tf_serving to person_detected
e name: “tf_serving_to_person”
* From State: tf_serving
 To State: person_detected
 Audio Instruction: “Found Person!”

Add Predicate

— name: “tf_serving_to_chair_predicate”
— type: HasObjectClass

— class_name: 1

18

Chapter 1. User Guide

gabrieltool Documentation, Release 1.1.0

Transition

Name tf_serving_to_person
From State tf_serving

To State person_detected
Audio Instruction Found Person!

Image Instruction

New Image
Video Instruction
New Predicate
name tf_serving_to_person_predi
Type HasObjectClass

class_name 1

Add Predicate

1.3. Tutorial 19

Save Changes

gabrieltool Documentation, Release 1.1.0

person_detected back to tf_serving
* name: “person_to_tf serving”

* From State: person_detected

 To State: tf_serving

e Add Predicate
— name: “person_to_tf serving_predicate”

— type: Always

20 Chapter 1. User Guide

gabrieltool Documentation, Release 1.1.0

Transition

Name person_to_tf_serving
From State person_detected
To State tf_serving

Audio Instruction

Image Instruction

Mew Image
Video Instruction
MNew Predicate
name person_to_tf_serving_predi
Type ‘ Always v |

Add Predicate
Close Save Changes

1.3. Tutorial 21

gabrieltool Documentation, Release 1.1.0

By now, we have finished creating the FSM. The complete FSM looks as follows.

Diagram

start_to_tf_serving thzgi?n‘;f;zeg:zg hair_detected

person_to_tf_servingson

derson_detectef

Let’s export the FSM to the same directory of our downloaded object detectors. The directory structure should look
like the following.

Gabrieltool CLI provides a convenient command-line tool to launch a gabriel server with the exported FSM. Connect
Gabriel Client to your server. When you point the client to a person or a chair, the application should say “Found
Person” or “Found chair” correspondingly.

’$ gbt run ./app.pbfsm

Once you’re done with the demo, make sure to clean up the created docker container with the following commands.

’$ docker stop -t 0 $(docker ps -a —q ——filter="name=GABRIELTOOL")

1.4 gabrieltool API

1.4.1 gabrieltool package
Subpackages

gabrieltool.statemachine package
Subpackages
gabrieltool.statemachine.callable_zoo package
Subpackages

gabrieltool.statemachine.callable_zoo.predicate_zoo package

22 Chapter 1. User Guide

gabrieltool Documentation, Release 1.1.0

Submodules
gabrieltool.statemachine.callable_zoo.predicate_zoo.base module

Callable classes for Transition Predicates.

All the classes here should be a callable and return either True/False when called (to indicate whether or not to take a
transition). All classes should inherit from CallableBase class and annoate their constructor (if there is one) with the
@record_kwargs decorator for proper serialization.

class Always
Bases: gabrieltool.statemachine.callable zoo.base.CallableBase

Always take this transition.
Useful for welcome message when the application starts.

classmethod from_json (json_obj)
Create a CallableBase class instance from a json object.

Subclasses should overide this class depending on the input type of their constructor.

class HasObjectClass (class_name)
Bases: gabrieltool.statemachine.callable zoo.base.CallableBase

Check if there is an object class in the extracted information of the sensor data.

classmethod from_json (json_obj)
Create a CallableBase class instance from a json object.

Subclasses should overide this class depending on the input type of their constructor.

class HasObjectClassWhileNotOthers (has_classes=None, absent_classes=None)
Bases: gabrieltool.statemachine.callable zoo.base.CallableBase

Check if there are some object classes in the extracted information while some other classes are not.

classmethod from_json (json_obj)
Create a CallableBase class instance from a json object.

Subclasses should overide this class depending on the input type of their constructor.

class Wait (wait_time=None)
Bases: gabrieltool.statemachine.callable zoo.base.CallableBase

Wait for some time before turning true.

classmethod from_json (json_obj)
Create a CallableBase class instance from a json object.

Subclasses should overide this class depending on the input type of their constructor.

Module contents
gabrieltool.statemachine.callable_zoo.processor_zoo package

Submodules

1.4. gabrieltool API 23

gabrieltool Documentation, Release 1.1.0

gabrieltool.statemachine.callable_zoo.processor_zoo.base module

Basic callable classes for Processor.

class DummyCallable (dummy_input="dummy_input_value’)

Bases: gabrieltool.statemachine.callable zoo.base.CallableBase
A Dummy Callable class for testing and examples.

classmethod from json (json_obj)
Create a CallableBase class instance from a json object.

Subclasses should overide this class depending on the input type of their constructor.

class FasterRCNNOpenCVCallable (proto_path, model_path, labels=None, conf_threshold=0.8)

Bases: gabrieltool.statemachine.callable zoo.base.CallableBase
A callable class that executes a FasterRCNN object detection model using OpenCV.

classmethod from_json (json_obj)
Create an object from a JSON object.

Parameters json_ob3j (json)—JSON object that has all the serialized constructor arguments.
Raises ValueError — when constructor arguments’ type don’t match.

Returns The deserialized FasterRCNNOpenCV Callable object.

Return type FusterRCNNOpenCVCallable

visualize_detections (img, results)

Visualize object detection outputs.

This is a helper function for debugging processor callables. The results should follow Gabrieltool’s convention,
which is

Parameters
* {OpenCV Image} (img)—

* {Dictionary} —-- a dictionary of class_idx -> [[x1l, yl, x2,
y2, confidence, cls_idx],..] (results)-

Returns OpenCV Image — Image with detected objects annotated

gabrieltool.statemachine.callable_zoo.processor_zoo.containerized module

Callable classes for Containerized Processors.

Currently we don’t offer functionalities to clean up the containers after the program finishes. Use the following
commands to clean up the containers started by this module.

$ docker stop -t 0 $(docker ps -a -q —filter="name=GABRIELTOOL"”)

class FasterRCNNContainerCallable (container_image_url, conf_threshold=0.5)

Bases: gabrieltool.statemachine.callable zoo.base.CallableBase
A callable class to execute containerized FasterRCNN model in Caffe.

Use this class if your object detector is generated by TPOD vl and the container image is hosted by
cmusatyalab’s gitlab container registry.

CONTAINER_NAME = 'GABRIELTOOL-FasterRCNNContainerCallable-129'

clean ()

24

Chapter 1. User Guide

gabrieltool Documentation, Release 1.1.0

container_ server_url

classmethod from_json (json_obj)
Deserialize.

class SingletonContainerManager (container_name)
Bases: object

Helper class to start, get, and remove a container identified by a name.

clean ()
Remove the container if it exists.

container
container_name

start_container (image_url, command, **kwargs)
Start a container

Parameters

e image_url (string) — Container Image URL.

* command (string)— Container command.

* kwargs (dictionary) — Extra arguments to pass to Docker client.
Returns A container
Return type Container

class TFServingContainerCallable (model_name, serving_dir, conf_threshold=0.5)
Bases: gabrieltool.statemachine.callable zoo.base.CallableBase

A callable class to execute frozen tensorflow models using TF serving container images.

Use this class if your object detector is generated by OpenTPOD and you have downloaded the model. The TF
serving container is started lazily when an FSM runner starts.

CONTAINER_NAME = 'GABRIELTOOL-TFServingContainerCallable-129'
SERVED_DIRS = {}

TFSERVING_GRPC_PORT = 8500

clean ()

container_external_port
Port of the TF Serving container.

classmethod from_json (json_obj)
Deserialize.

prepare ()
Launch the TF serving container. Do not call this method directly unless debugging.

This function is called when an FSM runner starts. This enables gabrieltool to start only one TF serving
container to serve many models.

gabrieltool.statemachine.callable_zoo.processor_zoo.tfutils module

Utilities for using Tensorflow models.

1.4. gabrieltool API 25

gabrieltool Documentation, Release 1.1.0

class TFServingPredictor (host, port)
Bases: object

An agent that makes request to a TF serving server to get object detection results.
This agent communicates with the TF serving server (often a container at localhost) through gRPC.

__init__ (host, port)
Constructor.

Parameters
* host (string) - TF serving server hostname or IP address.
* port (int)— TF serving server port number.

infer_ one (model_name, rgb_image, conf_threshold=0.5)
Infer one image by sending a request to TF serving server.

Parameters
¢ model_name (string)- Name of the Model
* rgb_image (numpy array)-Image in RGB format

e conf_threshold (float, optional)— Cut-off threshold for detection. Defaults
to 0.5.

Returns keys are class ids, values are list of [x1, y1, x2, y2, confidence, label_idx]. e.g {‘cat’:
[[0, 0, 100, 100, 0.6, “cat’]], 1: [[0, 0, 100, 100, 0.7, 111}

Return type Dictionary

Module contents

A collection of Callable classes to be used by Processors (in FSM states).

Submodules
gabrieltool.statemachine.callable_zoo.base module

Base class and helper functions for callable classes.

class CallableBase
Bases: object

Base class for Callables used in FSMs.

Custom callable classes need to inherit from this class. Inherited classes should add decorator @record_kwargs
to their constructors for serialization.

classmethod from_ json (json_obj)
Create a CallableBase class instance from a json object.

Subclasses should overide this class depending on the input type of their constructor.

class Null
Bases: gabrieltool.statemachine.callable zoo.base.CallableBase

A empty callable class that returns None.

Useful for initialization.

26 Chapter 1. User Guide

gabrieltool Documentation, Release 1.1.0

classmethod from_json (json_obj)
Create a CallableBase class instance from a json object.

Subclasses should overide this class depending on the input type of their constructor.

record_kwargs (func)
Decorator to automatically record constructor arguments

>>> class process:
@record_kwargs

def _ init_ (self, cmd, reachable=False, user='root'):
. pass
>>> p = process ('halt', True)

>>> p.cmd, p.reachable, p.user
("halt', True, 'root')

Module contents

A collection of Callable classes to be used by Processors and TransitionPredicates.

Submodules
gabrieltool.statemachine.fsm module

Components to Create a Finite State Machine.
See FSM’s wikipedia page for its basics: https://en.wikipedia.org/wiki/Finite-state_machine.

This modules provides components to create, edit, serialize, and deserialize a finite state machine. Below is a list of
key concepts.

¢ State: FSM states represents the status of a cognitive assistant. States have Processors, which are executed
to analyze the input data when the application is in the state.

 Transitions: Transitions define the conditions (TransitionPredicate) for state change and actions (Instruc-
tion) to take when changing states.

* Finite State Machine (StateMachine): An FSM is a set of states and transitions. Helper functions are pro-
vided in the StateMachine class for serialization, deserialization and traversal.

class Instruction (name=None, audio=None, image=None, video=None)
Bases: gabrieltool.statemachine.fsm._FSMObJjBase

Instruction to return when a transition is taken.

init (name=None, audio=None, image=None, video=None)
Instructions can have audio, image, or video.

Parameters
* name (string, optional)-— Name of the instruction. Defaults to None.
e audio (string, optional)— Verbal instruction in text. Defaults to None.
* image (bytes, optional)-Encoded Image in bytes. Defaults to None.
e video (url string, optional)- Video Url in string. Defaults to None.

from_desc (desc)
Construct an object from its serialized description.

1.4. gabrieltool API 27

https://en.wikipedia.org/wiki/Finite-state_machine

gabrieltool Documentation, Release 1.1.0

to_desc()
Returned the serialized description of this object as a protobuf message.

class Processor (name=None, callable_obj=None)
Bases: gabrieltool.statemachine.fsm._FSMCallable

Processor specifies how to process input (e.g. an image) in a state.

__init__ (name=None, callable_obj=None)
Construct a processor.

Parameters
* name (string, optional)- Name of the processor. Defaults to None.

* callable_obj (subclass of callable zoo.CallableBase,
optional) — An object whose type is a subclass of callable_zoo.CallableBase.
This object is called/executed when there is a new input (e.g. an image). This callable_obj
should expect exact one positional argument. Defaults to None.

callable_obj
The callable object to invoke when this object is called.

from_desc (data)
Construct an object from its serialized description.

prepare ()
Invoke prepare() method of the callable_obj if it has any.

This prepare method is called when the FSM runner starts executing to give callables an opportunity to
initialize themselves.

to_desc()
Returned the serialized description of this object as a protobuf message.

class State (name=None, processors=None, transitions=None)
Bases: gabrieltool.statemachine.fsm._FSMObJjBase

A FSM state represents the status of the system.
A state can have many processors and transitions.

__dinit__ (name=None, processors=None, transitions=None)
Construct a FSM state.

Parameters

* name (string, required)— Name of the State. Each state in a FSM needs to have
an unique name.

* processors (list of Processor, optional)— Processor to run on an input
in this state. Each processor will be called with exactly one positional argument (input),
and should return a dictionary that contains the extracted information. The returned dic-
tionaries from multiple processors will be unioned together to serve as inputs to transition
predicates. Defaults to None.

e transitions (I1ist of Transition, optional) - Possible Transitions from
this state. Transitions are evaluated one by one in the order of this list. The first transition
that satisfies will be taken. Defaults to None.

from desc ()
Do not call this method directly.

28 Chapter 1. User Guide

gabrieltool Documentation, Release 1.1.0

State itself does not know enough information to build from its description. The next_state in state’s
transitions depends on a FSM. Use StateMachine Helper Class instead.

Raises Not ImplementedError — Always

prepare ()
Prepare a state (e.g. initialize all processors and transition predicates.)

This method is called when the FSM runner first starts to give callables an opportunity to initialize them-
selves.

processors
The list of processors to be executed in this state.

to_desc ()
Returned the serialized description of this object as a protobuf message.

transitions
The list of possible transitions to take in this state.

class StateMachine
Bases: object

Helper class to serialize, deserialize, and traverse a state machine.

classmethod bfs (start_state)
Generator for a breadth-first traversal on the FSM.

This method can be used to enumerate states in an FSM.
Parameters start_state (State) — The start state of the traversal.
Yields State — The current state of the traversal.

classmethod from bytes (data)
Load a State Machine from bytes.

Parameters
* data (bytes) — Serialized FSM in bytes. Format is specified in
* wca_state_machine.proto. —
Raises ValueError - raised when there are duplicate state names.
Returns The start state of the FSM.
Return type State

classmethod to_bytes (name, start_state)
Serialize a FSM to bytes.

States in the FSM are discovered using a breadth-first search (see the bfs method in this class).
Parameters
* name (string)— The name of the FSM.
* start_state (State) — The start state of the FSM.
Raises ValueError —raised when there are duplicate state names.
Returns Serialized FSM in bytes. Format is defined in wca_state_machine.proto.

Return type bytes

1.4. gabrieltool API 29

gabrieltool Documentation, Release 1.1.0

class Transition (name=None, predicates=None, instruction=None, next_state=None)
Bases: gabrieltool.statemachine.fsm._FSMObJjBase

Links among FSM states that defines state changes and results to return when changing states.

A Transition has the following components:

* transition predicates: The conditions that need to be satisfied to take this transition.
 next_state: The next FSM state to visit after taking the transition.
* instructions: Instructions returned to users when this transition is taken.

__init__ (name=None, predicates=None, instruction=None, next_state=None)
Construct a Transition

Parameters

* name (string, optional)-— Name of the transition. Defaults to None.

* predicates (a list of TransitionPredicate, optional) — A list of

condition to satisfy. They are daisy-chained (AND) together when evaluating whether
this transition takes place. Defaults to None.

e instruction (Instruction, optional)- Instruction to give. Defaults to None.

* next_state (State, optional)- Next state to move to. Defaults to None.

from_desc ()
Do not call this method directly.

Transition itself does not know enough information to build from its description. next_state variable de-
pends on a FSM. Use StateMachine Helper Class instead.

Raises Not ImplementedError — Always

predicates
The list of TransitionPredicates.

to_desc()
Returned the serialized description of this object as a protobuf message.

class TransitionPredicate (name=None, callable_obj=None)
Bases: gabrieltool.statemachine.fsm._FSMCallable

Condition for state transition.

TransitionPredicate determines whether a state transition should taken. TransitionPredciate implements the

callable interface so that its objects can be evaluated as a function. A state transition is taken when a Transition-
Predicate evaluates to True.

__init__ (name=None, callable_obj=None)
Construct a transition predicate.

Parameters

* name (string, optional)-— Name of the TransitionPredicate. Defaults to None.

* callable_obj (subclass of callable zoo.CallableBase,
optional) — An object whose type is a subclass of callable_zoo.CallableBase.
This object is called/executed when this transition predicate is called to determine
whether the current transition should be taken. This callable_obj should expect exact

one positional argument of type dictionary, which contains the output of current state’s
processors. Defaults to None.

30 Chapter 1. User Guide

gabrieltool Documentation, Release 1.1.0

callable_obj
The callable object to invoke when this object is called.

from_desc (data)
Construct an object from its serialized description.

prepare ()
Invoke prepare() method of the callable_obj if it has any.

This prepare method is called when the FSM runner starts executing to give callables an opportunity to
initialize themselves.

to_desc()
Returned the serialized description of this object as a protobuf message.

gabrieltool.statemachine.instruction_pb2 module
gabrieltool.statemachine.runner module

Finite State Machine Runner.
Runner to run the cognitive assistants that are expressed as state machines.

class BasicCognitiveEngineRunner (engine_name, fsm)
Bases: gabriel_server.cognitive_engine.Engine

A basic Gabriel Cognitive Engine Runner for FSM based cognitive assistants.

This runner will start a Gabriel cognitive engine that follows the logic defined in a FSM. This class is basic as it
restricts the sensor input to be images and the instruction output to be audio or images.

__init__ (engine_name, fsm)
Construct a Gabriel Cognitive Engine Runner.

Parameters
* engine_name (string)— Name of the cognitive engine.
e f£sm (State)— The start state of an FSM.

handle (from_client)
Do not call directly.

This method is invoked by the gabriel framework when a user input is available.

class Runner (sfart_state, prepare_to_run=True)
Bases: object

Finite State Machine Runner.
A basic finite state machine runner. Make sure the fsm is constructed fully before creating a runner.

__init__ (start_state, prepare_to_run=True)
Construct a FSM runner.

Parameters
e start_state (State) - The start state of a FSM.

e prepare_to_run (bool, optional)— Whether to call prepare() functions on all
state before running. It should be set to true unless debugging. Defaults to True.

feed (data, debug=False)
Feed the FSM an input to get an output.

1.4. gabrieltool API 31

gabrieltool Documentation, Release 1.1.0

Parameters

* data (any) — Input data.

* debug (bool, optional)- Defaults to False.
Raises ValueError — when current state is None.
Returns Instruction from the FSM.

Return type [nstruction

gabrieltool.statemachine.wca_state_machine_pb2 module
Module contents

Library to build application logic as a Finite State Machine.

_pb2 modules are generated python modules by Protobuf for serialization. See the proto directory for the serialization
formats.

Module contents

A set of tools and libraries for fast prototyping wearable cognitive assistants.

1.5 Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

1.5.1 Types of Contributions

Report Bugs

Report bugs at https://github.com/cmusatyalab/OpenWorkflow/issues.
If you are reporting a bug, please include:
* Your operating system name and version.
* Any details about your local setup that might be helpful in troubleshooting.

¢ Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants
to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

32 Chapter 1. User Guide

https://github.com/cmusatyalab/OpenWorkflow/issues

gabrieltool Documentation, Release 1.1.0

Write Documentation

OpenWorkflow could always use more documentation, whether as part of the official OpenWorkflow docs, in doc-
strings, or even on the web in blog posts, articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/cmusatyalab/OpenWorkflow/issues.
If you are proposing a feature:

 Explain in detail how it would work.

» Keep the scope as narrow as possible, to make it easier to implement.

* Remember that this is a volunteer-driven project, and that contributions are welcome :)

1.5.2 Get Started!

Ready to contribute? Here’s how to set up OpenWorkflow for local development.
1. Fork the OpenWorkflow repo on GitHub.
2. Clone your fork locally:

$ git clone git@github.com:your_name_here/gabrieltool.git

3. Install your local copy into a virtualenv:

python3 -m venv env

. env/bin/activate

cd gabrieltool/

pip install -r requirements/dev.txt
python setup.py install

v W U r »

4. Create a branch for local development:

’$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass linter (autopep8) and the tests:

’$ python -m pytest <directory>

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

1.5.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1.5. Contributing 33

https://github.com/cmusatyalab/OpenWorkflow/issues

gabrieltool Documentation, Release 1.1.0

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring.

3. The pull request should work for Python 3.5, 3.6, and 3.7. Check https://github.com/cmusatyalab/
OpenWorkflow/actions and make sure that the tests pass for all supported Python versions.

1.5.4 Deploying

A reminder for the maintainers on how to deploy. Make sure all your changes are committed.

gabrieltool Python Package

[This Github workflow](https://github.com/cmusatyalab/OpenWorkflow/blob/master/.github/workflows/
pythonpackage.yml.yml) will then deploy to PyPI if tests pass.

FSM Web Editor
Generate Documentation

After pushing to remove, The documentation page will automatically build the docs directory through a webhook
integration.

1.6 History

1.6.1 0.0.1 (2018-11-14)

* First release on PyPI.

34 Chapter 1. User Guide

https://github.com/cmusatyalab/OpenWorkflow/actions
https://github.com/cmusatyalab/OpenWorkflow/actions
https://github.com/cmusatyalab/OpenWorkflow/blob/master/.github/workflows/pythonpackage.yml.yml
https://github.com/cmusatyalab/OpenWorkflow/blob/master/.github/workflows/pythonpackage.yml.yml
https://readthedocs.org/projects/openworkflow/

CHAPTER 2

Installation

2.1 gabrieltool Python Library

First, make sure Docker is installed. You can follow the Docker installation guide.

Option 1. From PyPI (recommended)

$ pip install -U gabrieltool

Option 2. From Source

$ git clone https://github.com/cmusatyalab/OpenWorkflow.git
$ cd OpenWorkflow/
$ python setup.py install

2.2 OpenWorkflow State Machine Web Editor

Visit https://cmusatyalab.github.io/OpenWorkflow. Or You can download the build from the repo’s gh-pages branch
and open the index.html.

35

https://docs.docker.com/get-docker/
https://cmusatyalab.github.io/OpenWorkflow
https://github.com/cmusatyalab/OpenWorkflow/archive/gh-pages.zip

gabrieltool Documentation, Release 1.1.0

36 Chapter 2. Installation

20

21

22

23

24

CHAPTER 3

Quickstart

3.1 Python Library gabrieltool

Create a Two State FSM

from gabrieltool.statemachine import fsm, predicate_zoo, processor_zoo

create a two state state machine
st_start = fsm.State
name="'start',
processors=[fsm.Processor (
name='proc_start',
callable_obj=processor_zoo.DummyCallable ()
)1,
transitions=|[
fsm.Transition (
name="'tran_start_to_end',
predicates=][
fsm.TransitionPredicate (
callable_obj=predicate_zoo.Always ()

)
st_end = fsm.State (
name="end'

)

st_start.transitions[0] .next_state = st_end

Save the FSM to a file

save to disk
with open('simple.pbfsm', 'wb') as f:

(continues on next page)

37

o U s W

gabrieltool Documentation, Release 1.1.0

(continued from previous page)

f.write(fsm.StateMachine.to_bytes(
name='"simple_ fsm',
start_state=st_start

))

Launch a gabriel server using the FSM.

’$ gbt run ./simple.pbfsm

See Tutorial for a detailed example.

3.2 OpenWorkflow State Machine Editor

The editor is hosted at https://cmusatyalab.github.io/OpenWorkflow/. An instruction video is available here.

This web editor provides the following functionalities.
1. Import to view a saved FSM file. This FSM file can be created either from gabrieltool or from the web editor.
2. Export a FSM to a file.

3. Edit FSM states and transitions. Note that only supported operations from processor_zoo and predicate_zoo can
be edited. Custom defined functions can not be created or modified in the web editor.

Compared to the gabrieltool Python library, the web editor provides better visualization and is great for creating small
FSMs. For more complicated FSMs, consider using the gabrieltool for better reproducibility and efficiency.

3.3 Gabrieltool CLI (gbt)

The gabrieltool cli (gbt) provides a convenient method to launch a gabriel server given an FSM, created by the python
library or the web editor.

$ gbt run <path-to-fsm>
$ # for usage details, see gbt -h

38 Chapter 3. Quickstart

https://cmusatyalab.github.io/OpenWorkflow/
https://youtu.be/L9ugONLpnwc

CHAPTER 4

Contribute

* Issue Tracker: https://www.github.com/cmusatyalab/OpenWorkflow/issues

* Source Code: https://www.github.com/cmusatyalab/OpenWorkflow

39

https://www.github.com/cmusatyalab/OpenWorkflow/issues
https://www.github.com/cmusatyalab/OpenWorkflow

gabrieltool Documentation, Release 1.1.0

40 Chapter 4. Contribute

CHAPTER B

Indices and tables

* genindex
* modindex

e search

41

gabrieltool Documentation, Release 1.1.0

42 Chapter 5. Indices and tables

Python Module Index

g

gabrieltool,
gabrieltool.
gabrieltool.

27

gabrieltool.

26

gabrieltool.

23

gabrieltool.

23

gabrieltool.

26

gabrieltool.

24

gabrieltool.

24

gabrieltool.

25

gabrieltool.
gabrieltool.

31

gabrieltool.
gabrieltool.

32

32

statemachine,
statemachine.

statemachine.

statemachine.

statemachine.

statemachine.

statemachine.

statemachine.

statemachine.

statemachine.
statemachine.

statemachine.
statemachine.

32

callable_zoo,

callable_zoo

callable_zoo.

callable_zoo.

callable_zoo.

callable_zoo.

callable_zoo.

callable_zoo

fsm, 27

.base,

predicate_zoo
predicate_zoo.base,
pProcessor_zoo
processor_zoo.base,
processor_zoo.containerized,

.processor_zoo.tfutils,

instruction_pb2,

runner, 31

wca_state_machine_pb2,

43

gabrieltool Documentation, Release 1.1.0

44 Python Module Index

Index

Symbols

__init__ () (BasicCognitiveEngineRunner method),
3]

__init__ () (Instruction method), 27

__init__ () (Processor method), 28

init () (Runner method), 31

__init__ () (State method), 28

__init__ () (TFServingPredictor method), 26

__init__ () (Transition method), 30

__init__ () (TransitionPredicate method), 30

A

Always (class in gabriel-
tool.statemachine.callable_zoo.predicate

23

B

BasicCognitiveEngineRunner (class in gabriel-
tool.statemachine.runner), 31

(gabrieltool.statemachine.fsm.StateMachine
class method), 29

bfs ()

C

callable_obj (Processor attribute), 28

callable_ob7j (TransitionPredicate attribute), 30

CallableBase (class in gabriel-
tool.statemachine.callable_zoo.base), 26

clean () (FasterRCNNContainerCallable method), 24

clean () (SingletonContainerManager method), 25

clean () (TFServingContainerCallable method), 25

container (SingletonContainerManager attribute), 25

container_external_port (TFServingContainer-
Callable attribute), 25

CONTAINER_NAME (FasterRCNNContainerCallable at-
tribute), 24

container_name (SingletonContainerManager at-
tribute), 25

CONTAINER_NAME (TFServingContainerCallable at-
tribute), 25

container_server_url
Callable attribute), 25

(FasterRCNNContainer-

D

DummyCallable (class in gabriel-
tool.statemachine.callable_zoo.processor_zoo.base),
24

F

FasterRCNNContainerCallable

(class in gabriel-
tool.statemachine.callable_zoo.processor_zoo.containerized),
24

- z00.basBypStETRCNNOpenCVCallable (class in gabriel-

tool.statemachine.callable_zoo.processor_zoo.base),
24
feed () (Runner method), 31
from_bytes ()
tool.statemachine.fsm.StateMachine
method), 29
from_desc () (Instruction method), 27
from_desc () (Processor method), 28
from_desc () (State method), 28
from_desc () (Transition method), 30
from_desc () (TransitionPredicate method), 31
from_json () (gabriel-
tool.statemachine.callable_zoo.base.CallableBase
class method), 26
from_json () (gabriel-
tool.statemachine.callable zoo.base.Null
class method), 26
from_json () (gabriel-
tool.statemachine.callable_zoo.predicate_zoo.base.Always
class method), 23
from_json ()

(gabriel-
class

—~ o~ o~ —~

)
)
)
)

(gabriel-

tool.statemachine.callable_zoo.predicate_zoo.base.HasObjectCla

class method), 23

from_json () (gabriel-

tool.statemachine.callable_zoo.predicate_zoo.base.HasObjectCla

class method), 23

45

gabrieltool Documentation, Release 1.1.0

from_json ()

tool.statemachine.callable_

class method), 23
from_json ()

tool.statemachine.callable_

class method), 24
from_json ()

tool.statemachine.callable_

class method), 24
from_json()

tool.statemachine.callable_

class method), 25
from_json ()

tool.statemachine.callable_

class method), 25

G

gabrieltool (module), 32

gabrieltool.statemachine (module), 32
gabrieltool.statemachine.

(module), 27

gabrieltool.statemachine.

(module), 26

gabrieltool.statemachine.

(module), 23

gabrieltool.statemachine.

(module), 23

gabrieltool.statemachine.

(module), 26

gabrieltool.statemachine.

(module), 24

gabrieltool.statemachine.

(module), 24

gabrieltool.statemachine.

(module), 25

gabrieltool.statemachine.
gabrieltool.statemachine.

(module), 31

gabrieltool.statemachine.

31

gabrieltool.statemachine.

(module), 32

Fi

(gabriel- |

zoo.predicate_zoo.base. Wail - one () (TFServingPredictor method), 26
Instruction (class in gabrieltool.statemachine.fsm),

(gabriel- 27
zoo.processor_zoo.base.DummyCallable

(gabriel- 1 (class in gabriel-
zoo.processor_zoo.base.FasterR FJXM%?%‘C’%@%% able_z00.base), 26

(gabriel- P
co0.processor_woo.condinerleed FagerR CNNCortangr Caligge
(gabriel- prepare () (Processor method), 28
00.processor_zoo. con?c;:irez r?zleﬁ?) .%S e m(,ezt)}rItOdr’zezrgCall
200-p -7 prepare’ f ‘[)Jﬁvyelgvmgtcaonmmerggﬁable method), 25

prepare () (TransitionPredicate method), 31
Processor (class in gabrieltool.statemachine.fsm), 28
processors (State attribute), 29

R

record_kwargs () (in module gabriel-
b tool.statemachine.callable_zoo.base), 27
“f8nner (class in gabrieltool.statemachine.runner), 31

callable_zoo
callable_zoo.

callable_zoo. prgiicate_zoo

pr SERVERDIRS 1, {dEServingContainerCallable
iribute),

prgéggéggogggntaine rManager (class in gabriel-
fool.statemachine.callable_zoo.processor_zoo.containerized),

callable_zoo. at-

callable_zoo.

processorz_szoo .base . .
start_container () (SingletonContainerManager

proces sormefg%d.)c%%_t ainerized
State (class in gabrieltool.statemachine.fsm), 28

probatedachine syt 1 {dass in gabriel-

tool.statemachine.fsm), 29

callable_zoo.
callable_zoo.
callable_zoo.

fsm (module), 27

inst ruction_prT
TFSERVING_GRPC_PORT

Callable attribute), 25

TFServingContainerCallable (class in gabriel-

wca_state_machine_pb2 fool.statemachine.callable_zoo.processor_zoo.containerized),
25

TFServingPredictor (class in gabriel-
tool.statemachine.callable_zoo.processor_zoo.tfutils),

(TFServingContainer-

runner (module),

handle () (BasicCognitiveEngineRunner method), 31 25)
HasObjectClass (class in gabriel- Fo-Pytes() ‘ . (gabriel-
tool.statemachine.callable_zoo.predicate_zoo.base), tool.statemachine.fsm.StateMachine class
23 method), 29
HasObjectClassWhileNotOthers to_desc () (nstruction method), 27
(class in gabriel- to—desc() (Processor method), 28
tool.statemachine.callable_zoo.predicate_zoo.basg),o—deSC () (State r.n.ethod), 29
23 to_desc () (Transition method), 30
to_desc () (TransitionPredicate method), 31
46 Index

gabrieltool Documentation, Release 1.1.0

Transition (class in gabrieltool.statemachine.fsm),
29

TransitionPredicate (class in gabriel-
tool.statemachine.fsm), 30

transitions (State attribute), 29

V

visualize_detections () (in module gabriel-
tool.statemachine.callable_zoo.processor_zoo.base),

24

W

Wait (class in gabriel-
tool.statemachine.callable_zoo.predicate_zoo.base),
23

Index

47

	User Guide
	Installation
	Quickstart
	Contribute
	Indices and tables
	Python Module Index
	Index

